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With the idea of the phononic crystals, the advanced composite structures of phononic crystal Timoshenko beams are 

designed. The simplified vibration equation and the general vibration equation are firstly presented in this paper. Based on 

the two vibration equations, the plane wave expansion method is introduced to calculate the bending vibration band 

structures of phononic crystal Timoshenko beams. Compared with the results of two methods and the exact solution by the 

transfer matrix method, the present plane wave expansion method with two variables is suitable for solving band gaps of 

phononic crystal Timoshenko beams. 
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1. Introduction 

 

In the recent years, the existence of complete band 

gaps in periodic composite materials called phononic 

crystal (PC) has received much attention. According to 

its adjustable frequency ranges of band gaps, the PC 

systems have widely potential applications in controlling 

vibrations. Based on the relevant scientific research, 

some PCs have been successfully designed as high 

efficiency waveguides [1, 2] and transducers [3, 4], while 

more potential engineering applications of the PCs, e.g., 

vibration isolation, acoustic collimating and noise 

reduction will be apperceived. 

The emphasis of band gaps in PCs is laid on both 

experimental and theoretical research. A large count of 

tests with different periodic structures from 1D to 3D has 

been performed, and two kinds of gap mechanism for 

PCs, Bragg scattering mechanism [5, 6] and locally 

resonant mechanism [7, 8] have been observed. 

Meanwhile, several theoretical methods have been 

developed to study the band structures, such as the 

transfer matrix method (TMM) [9], the plane wave 

expansion method (PWEM) [5, 6, 10], the finite 

difference time domain method (FDTDM) [1, 11, 12], the 

multiple scattering theory (MST) [13, 14], the 

lumped-mass method (LMT) [15], and the finite element 

method (FEM) [16]. 

Beams are often applied in bridges, railways, and the 

part of sustaining constructs while the dynamic analysis 

of beams has been a pop topic [17], in which the problem 

of resonance vibration has been often encountered. Due 

to the existence of band gaps in PCs, the concept of PC 

beams provides a possible approach for the control of 

vibration. Wen et al. [18] calculated the flexural vibration 

band structure of PC Euler-Bernoulli beam by PWEM. 

Yu et al. [19] presented the flexural vibration band 

structure of PC Timoshenko beam by PWEM with single 

variable and compared with the results of a finite 

periodic structure by FEM. By using TMM, Shen et al. 

[20] studied the flexural vibration property of periodic 

pipe beam conveying fluid based on Timoshenko beam 

and the effects of the spring support stiffness on the band 

gap have been analyzed. Xiang et al. [21] calculated the 

flexural vibration band structure of PC Timoshenko/ 

Euler-Bernoulli beams by differential quadrature element 

method (DQEM). 

Having the distinct physical meanings, PWEM is the 

most popular method to calculate the band structures of 

PCs. Existing the faire calculating error (maximum 

relative error is about 15% in the first 3 band gaps) by 

PWEM with single variable in the relevant research, the 

flexural vibration band structure of PC Timoshenko beam 

is analyzed in this paper. Firstly, the simplified vibration 

equation is presented according to the assumption of the 

homogenization. Based on the basic assumption of 

Timoshenko beam theory, the general governing equation 

of flexural vibration of heterogeneous Timoshenko beam 

with two variables is deduced. By introducing the idea of 

Fourier series and Bloch theorem, PWEM with two 

variables or one, referred to the general vibration 

equation or simplified equation, is presented to solve the 

vibration equations. The flexural vibration band 

structures of PC Timoshenko beams are calibrated by 

solving the algebraic eigenvalue equations. The 

comparisons between the different methods are 

performed finally. 
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2. Vibration equation 

 

2.1 Simplified vibration equation 

 

In many conditions, homogenous beams are applied 

in many engineering applications, and periodic structures 

are regarded as homogenous systems at local level, so the 

general vibration equation can be deduced as a simplified 

formation. To solve the flexural vibration band gaps of 

PC Timoshenko beams, the general vibration equation 

for TMM can be developed by the vibration equation of a 

homogenous Timoshenko beam: 
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where E and G represent the Young’s modulus and shear 

modulus of beam respectively. I is the second axial 

moment of area, and A is the area of cross section of the 

beam. w(x, t) is the flexural displacement. Although a PC 

Timoshenko beams describes the heterogeneous behavior, 

the physical parameters E(x), G(x), I(x) and A(x) can be 

regarded as invariables in Eq. (1). The reason is that Eq. 

(1) can be regarded as the control equation for each 

segment and TMM is applied at the interface of the 

segment directly. That is to say the material parameters in 

Eq. (1) keep constant in the range of the segment. 

Evidently, the above vibration equation has clear physical 

meanings for TMM which has been used to calculate the 

band structures of PC Timoshenko beams. The result of 

TMM is the exact solution and it is considered as 

analytical solution. 

Assuming that a PC Timoshenko beam is regarded 

as a homogenous system at macroscopic level, the 

simplified vibration equation for PWEM can be 

expressed as following: 
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This simplified vibration equation for PWEM, 

described by the flexural displacement w(x, t), has been 

proposed to solve the PC Timoshenko beam [19]. 

 

 

2.2 General vibration equation 

 

Timoshenko beam theory [17] takes the effects of 

shear deformation and rotational inertia into account, and 

the flexural vibration of a PC Timoshenko beam should 

be regarded as a problem of a heterogeneous Timoshenko 

beam. Therefore, the material parameters and physical 

variables are related to the coordinate x. According to 

Timoshenko beam theory, the cross section of beam 

keeps being a plane after deformation. Therefore, the 

angle caused by shear deformation β(x, t) can be 

expressed as: 
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where α(x, t) is the slope of neutral axis. 

Considering the different location, the bending 

moment M(x, t) and the shear force Q(x, t) of cross 

section can be expressed as: 
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Note that E(x), G(x), I(x) and A(x) should be expressed 

by the function of x. κ(x) is shear correction coefficient 

which is relevant to the shape of cross section. It is equal 

to 5/6 in the case of rectangle cross section. 

The conditions for rotational equilibrium and the 

force equilibrium require that: 
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where m(x)=ρ(x)A(x) is the mass per unit length, 

r(x)=(I(x)/A(x))
1/2

 is radius of gyration of cross section. 

By substituting Eq. (4) into Eq. (5), the general vibration 

equation of a heterogeneous Timoshenko beam can be 

expressed as following: 
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 (6) 

 

It is evident that to solve the Eq. (6), two coupled 

variables, flexural displacement w(x, t) and rotational 

angle α(x, t), should be taken into account simultaneously. 

By using the general vibration equation, the case of PC 

Timoshenko beams can be well calculated. 

 

 

3. Plane wave expansion method 

 

Fig. 1 illustrates a binary PC Timoshenko beam. The 
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geometric parameters (cross section and length) and 

material parameters (Young’s modulus, shear modulus 

and density) of segmental beams are periodically 

arranged along x direction infinitely. In a period, there 

are two segmental beams. The geometric and material 

parameters are constant in each segmental beam. a1 and 

a2 are the length of segmental beam A and B, respectively. 

a=a1+a2 is the periodic parameter of binary PC 

Timoshenko beam. 
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Segmental beam A Segmental beam B 

 

Fig. 1. Binary PC Timoshenko beam. 

 

 

3.1 General method with two variables 

 

For the general vibration equation Eq. (6) of PC 

Timoshenko beam, we can demonstrate m1(x)=ρ(x)A(x), 

m2(x)=κ(x)G(x)A(x), m3(x)=ρ(x)I(x), m4(x)=E(x)I(x). 

Because of the periodicity of PC Timoshenko beam, 

these material parameters can be expanded in Fourier 

series as: 
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where G2 is one-dimensional reciprocal lattice vector and 

Mn(G2) is the corresponding Fourier coefficient of 

material parameters mn(x). 

By means of Bloch theorem, the flexural 

displacement w and rotational angle of cross section α 

can be expressed as: 
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where k is one-dimensional wave vector and ω is circular 

frequency. wk and αk are periodic functions with the same 

spatial periodicity of material parameters, so wk and αk 

also can be expanded in Fourier series: 
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where G1 is also one-dimensional reciprocal lattice vector. 

Wk(G1) and θk(G1) are Fourier coefficients of wk and αk, 

respectively. 

By substituting Eqs. (7), (8) and (9) into Eq. (6), we 

obtain: 
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where G3=G1+G2.. Equation (10) is an infinite-order 

eigen-value problem, so the Fourier series need to be 

translated to finite items to obtain the numerical solution. 

Generally, the result is more precise with the greater 

value of n. When n reciprocal vectors are selected in 

primitive reciprocal lattice vector direction, 2n+1 plane 

waves are chosen. A 2×(2n+1) matrix equation can be 

expressed as a generalized eigenvalue equation: 

 
2 PX QX                 (11) 

 

where X=[Wk(G1) θk(G1)]
T
, P=[P

ij
] and Q=[Q

ij
] with i, 

j=1,2. Wk(G1) and θk(G1) are both 2n+1 order arrays of 

Fourier coefficients. P
ij
 and Q

ij
 are all 2n+1 order square 

block matrices and the entries of them are: 
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where G1
(j)

 is the reciprocal vector in the G1 reciprocal 

vector space with index j, and G3
(i)

 is the reciprocal 

vector in the G3 reciprocal vector space with index i. 

Because P is a real symmetric positive definite matrix 

and Q is a Hermitian matrix, eigenvalue ω
2
 is real based 

on matrix theory. If wave vector k is picked from the first 

Brillouin zone which is interval [-π/a, π/a], Equation (11) 

can be solved numerically. Therefore, the relation curves 

between wave vector k and eigen-frequency ω are 

obtained,  which is the band structure of PC 

Timoshenko beam. 
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 3.2 Simplified method with one variable 

 

Based on the simplified vibration equation, the 

similar method is performed and the generalized 

eigenvalue equation can be deduced by using the similar 

method calculated for the general vibration equation of 

PC Timoshenko beam. This method has been firstly 

proposed by Yu et al. In this paper, we just propose this 

simplified method directly. More details can be seen in 

Ref [19]. 

 

 

4. Numerical calibration 

 

To validate the proposed methods for calculating the 

band structures of PC Timoshenko beams, one example 

is calculated. Material A and B are aluminum and epoxy. 

The elastic parameters employed in the calculations are 

ρA=2730 kg/m
3
, EA=77.56 GPa, GA=28.87 GPa, ρA=1180 

kg/m
3
, EA=4.35 GPa and GA=1.59 GPa. The geometric 

parameters employed in the calculations are lA=lB=0.035 

m, bA=bB=0.02 m and hA=hB=0.01 m. The above 

mentioned parameters were also used by Yu et al. [19] 

that helps to verify the results of the proposed methods. 
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Fig. 2. Band structure of a PC Timoshenko beam. 

 

 
Table 1. Boundaries and the relative errors of the first 3  

band gaps of the PC Timoshenko beam by different methods.  

 
 Simplified  

method[18] 
Present method TMM 

Hz % Hz % Hz 

BG 1 

Low 
boundary 

1684    4.0 1747    0.2 1744 

High 
boundary 

2610    8.5 2421    0.6 2406 

BG 2 

Low 
boundary 

7014    0.2 7063    0.5 7030 

High 
boundary 

12300   15.4 10712   0.5 10658 

BG 3 

Low 
boundary 

17750   11.4 16025   0.6 15934 

High 
boundary 

21642    5.3 20622   0.3 20554 

 

 

Fig. 2 shows the band structures with n=100. 

Continuous line is the result by using the simplified 

vibration equation and dashed line is the result of the 

general vibration equation. To well describe the influence 

of the two methods, Table 1 shows the boundaries and 

the relative errors of the first 3 band gaps. Being an 

analytical method, the result of TMM is more accurate 

than that of the other methods, and its value is regarded 

as the standard solution. We can see that for the first 2 

band gaps, the result of the simplified method has larger 

range of frequency while its low boundary is lower and 

its high boundary is higher than that of the general 

method. The trend of the third band gap shows that the 

low boundary and the high boundaries of the simplified 

method are superior to that of the general method. 

Furthermore, compared with the results of TMM, the 

maximum relative error of the general method is about 

0.6% while its value of the simplified method is about 

15%. It is considered that the stability of the general 

method is better than that of the simplified method. The 

reason is that the simplified vibration equation is 

deduced by the assumption of homogenization; however, 

the material parameters of composites are significant 

different in this sample, which leads to inhomogeneous 

behavior at local level. It is concluded that the simplified 

method has fair relative error in some condition where 

the PC has large contrast in physical properties between 

the composites. 
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Fig. 3. The trend of eigen-frequencies calculated by 

 different numbers of plane waves. 
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Table 2. The computational time and the maximum relative 

error of BG 3 with different numbers of plane waves. 

  

n 10 20 30 40 50 60 

Time (s) 0.12 0.72 2.21 4.88 9.15 16.32 
Relative 

errors (%) 
3.10 2.86 1.90 1.42 1.14 0.95 

n 70 80 90 100 110  

Time (s) 28.70 42.58 61.70 87.94 115.47  

Relative 
errors (%) 

0.81 0.71 0.63 0.57 0.52  

 

Then the different numbers of plane wave are 

selected as n=10, 20 …110 and we calculate the band 

structure and the maximum relative error by the general 

vibration equation. Fig. 3 shows the boundaries of the 

first and the third band gap with the different n while 

Table 2 presents the computational time and the 

maximum relative error of the BG 3 with the different n. 

It is concluded as following: 

a.  The PWE method converges downward to the 

exact solution as the number of plane wave increases. 

When the number of plane waves reaches 60, the relative 

error can be kept less than 1.0%. 

b.  Results show that when the value of n is very 

large, the speed of convergence will be low due to the 

well-known Gibbs oscillations at the interfaces. At the 

same time, it taks a mount of time to calculate because 

the order of matrix of Eq. (11) is 4n+2, that is to say 

when n increases, the matrix calculation processes will 

increase by power series. 

Considering the relative error and computational 

time, a set of 100 plane waves is considered to employ in 

the calculations. 

 

 

5. Conclusion 

 

PWEM with two coupled variables (bending 

displacement and rotational angle) in calculation the 

bending vibration band structure of PC Timoshenko 

beam is proposed. Examples are studied to show its 

correctness and advantages in comparison with the 

PWEM with one variable (bending displacement). The 

present method shows better computational accuracy. 

Due to the advantages of the distinct physical meanings 

of PWEM with two coupled variables, the present 

method is easy to be extended to other situations of PC 

Timoshenko beam with few modifications. 
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